
Report

Advanced algorithms project

Authored by
Idriss BENGUEZZOU

Ghilas MEZIANE
Mohammed BOUTOUIZERA

Under Supervision of
Eduardo Brandao
Amaury Habrard

01/12/2022



Table of contents

1 Introduction 3
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Composition of the group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Setup 3
2.1 Technologies used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Language and IDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Project management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.3 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Implementation 4
3.1 Reminder of the knapsack problem . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Source of the data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.2.1 Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2.1.1 Random Generator . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2.1.2 Exponential Generator . . . . . . . . . . . . . . . . . . . . . . . 5
3.2.1.3 Normal law Generator . . . . . . . . . . . . . . . . . . . . . . . 5

3.2.2 Uploaded Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.3.1 Brute-force algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3.2 Dynamic programming algorithm . . . . . . . . . . . . . . . . . . . . . . 5

3.3.2.1 Top-Down approach . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3.3 Fully polynomial time scheme . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3.4 Greedy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.3.4.1 Greedy Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3.4.2 Greedy Weight . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3.4.3 Greedy Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.3.5 Branch and Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3.6 Markov Chain Monte Carlo (MCMC)(Randomized) . . . . . . . . . . . . 7

3.3.6.1 Markoc chaine . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3.6.2 Markov Chain Monte Carlo (MCMC) . . . . . . . . . . . . . . . 7

3.3.7 Personnel version based on Randomized approach . . . . . . . . . . . . . 8
3.3.8 Genetic algorithms (GAs) . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1



4 Experimentation & analyzing 10
4.1 Brute Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 Dynamic programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.3 Dynamic programming top and down version . . . . . . . . . . . . . . . . . . . . 11
4.4 The Fully polynomial time approximation scheme (FPTAS) . . . . . . . . . . . 11
4.5 Greedy weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.6 Greedy value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.7 Randomized approach (CMCM) . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.8 Genetic No optima . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.9 BRANCH AND BOUND BFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.10 BRANCH AND BOUND DFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 General comparison 15
5.1 Time comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2 Solution comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.3 Memory usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6 Checklist 16

2



1 Introduction

1.1 Overview

This report discusses the result of the work done in development of a solving knapsack problems
application. this project is part of the "Advanced Algorithmics" module that is part of the 1st
semester of our Data and Connected Systems master’s degree. This project is a joint work with
our colleagues from the Machine learning and data learning course.

1.2 Objective

The objective of this project is to implement some algorithms for solving the Knapsack Problem
and to provide an experimental study of their running time and quality. Indeed,this project aims
to evaluate the running time of the algorithms and the quality of the solutions given (in terms
of optimality)

1.3 Composition of the group

Our group is composed of five members :
BENGUEZZOU Idriss, MEZIANE Ghilas, BOUTOUIZERA Mohammed,ROUABAH Moham-
med, ZEGHDALLOU Ilyes. Each of us is part of the same master track (DSC : Données et
systèmes connectés).

2 Setup

2.1 Technologies used

2.1.1 Language and IDE

For this project, we opted for the Python language. As a development environment, we decided
to work on JupyterLab. The choice of the language is motivated by the fact that Python is a
language that perfectly matches data-oriented projects. Regarding the IDE, our choice is due
to the many features offered by Jupyterlab, which works with notebook files (.pynb), in which
we can group both our code snippets and our experimental part.
We provided a gantt diagramme at the begining of this project, we now can compare the
differences between the first diagramme and the current. As for why we went off schedule, a
lack of involvement from two members led to a bigger load of work on the rest of group. We
will detail the part realised by each member in the checklist at the end of this document.

2.1.2 Project management

As far as project management is concerned, we adopted the kanban method in order to distribute
the tasks, and set deadlines.We also used the git tool to make it easier for us to work in
collaborative mode.

3



2.1.3 Experimental setup

To be the more accurate possible when running our test we decided to launch the test on the
same laptop the whole semester, and we tried to run the test on the same condition, so when
running the test the laptop should only have one program opened (the IDE), and should not
be used during the phase of test. The stats of the laptot are as follows :

— Proccessor : 2.50 Ghz
— RAM Memory : 12 Go
— SSD Disk : 237 Go

3 Implementation

3.1 Reminder of the knapsack problem

The knapsack problem is a problem in combinatorial optimization : Given a set of items, each
with a weight and a value, determine the number of each item to include in a collection so that
the total weight is less than or equal to a given limit and the total value is as large as possible. It
derives its name from the problem faced by someone who is constrained by a fixed-size knapsack
and must fill it with the most valuable items. The problem often arises in resource allocation
where the decision-makers have to choose from a set of non-divisible projects or tasks under a
fixed budget or time constraint, respectively.

In this project we will study 10 algorithms :

— The brute-force approach exploring all the possible solutions in a systematic way.
— Branch and bound approach
— Three greedy approaches
— The dynamic programming approach seen in the exercise sheet, and the top-down version

that optimizes the number of calls
— The Fully polynomial time approximation scheme
— The optimal genetic approach and the non optimal approach)
— A Randomized approach
— A Genetic approach, with Ant Colony version

3.2 Source of the data

Before moving on to the implementation of the algorithms in order to solve the problem(s), we
need to generate these problems.For this, we have two options :

1. We developed several types of generators with the help of mathematical functions in
order to obtain different data distributions.

2. We developed a function that permits us to upload data-sets files, read them, fetch the
data we need and fill the objects with it.
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3.2.1 Generators

In order to represent our objects in the best possible way, we have defined a class Item, which
has the two integer attributes : value and weight. Then, we use an array of items whose size is
nb_items (the number of items) to store all our objects.

3.2.1.1 Random Generator We use the randInt function of python to generate a random
integer for the value and the weight of each item. And then we fill our chooseditems array.

3.2.1.2 Exponential Generator We use the exponential function to generate a random
integer for the the weight of each item. By this we can ensure that our distribution is following
an exponential path.

3.2.1.3 Normal law Generator In the same logic as the exponential generator, We used
the normal law to get a normal distribution for our items.

3.2.2 Uploaded Datasets

In order to ensure efficient tests, and interesting experimental results, we took the initiative to
implement a function that retrieves data from the dataset files proposed by our project tutor.
So to summarize, the user has the choice between generating their data via the application or
uploading them via the files belonging to the folder named "dataset".

3.3 Algorithms

3.3.1 Brute-force algorithm

Brute force is a straightforward approach to solving a problem, usually directly based on the
problem’s statement and definitions of the concepts involved.
Using brute force to solve the Knapsack problem is a simple solution. There will be 2n potential
combinations of elements for the knapsack if there are n elements to pick from. An element is
either selected or not. A bit string of 0’s and 1’s with a length equal to the number of elements
n, is created. If the ith symbol in a bit string is 0, the element is not selected. And if the answer
is 1, the element is picked.
Time complexity of the algorithm : O(2n) when n is the number of items.

3.3.2 Dynamic programming algorithm

Dynamic Programming is an algorithmic technique for solving an optimization problem by
breaking it down into simpler subproblems and utilizing the fact that the optimal solution to
the overall problem depends upon the optimal solution to its subproblems.
To solve 0/1 knapsack using Dynamic Programming we construct a 2D array having as dimen-
sions :

[nb_items + 1] [capacity + 1]
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The rows of the table correspond to items from 0 to nbitems. The columns of the table cor-
respond to weight limit from 0 to capacity. So the very last cell of our array is in the position
[nb_items + 1] [capacity + 1]. The value attribute of the cell in position [i][j] represents the
maximum profit possible when considering items from 0 to i and the total weight limit as j.
So after filling the table, we can say that our solution (maximal profit) is the value of the cell
which is in position [nb_items + 1] [capacity + 1].

So how do we fill the table ?

First of all, we set the 0th row and column to 0. We do this because the 0th row means
that we have no items and the 0th column means that the maximum weight possible is 0.
Now,for each cell [i][j],we have the choice between including or not the object at the position
[i] in our final selection. To include the item at the position [i], the total weight after including
item [i] should not exceed the weight limit , and the profit after should be greater as compared
to when item [i] is not included. By applying this rule for each cell, we finish to fill our table
and we can fetch the last cell to deduce the solution. Time complexity of the algorithm :
O(n ∗ w) when n is the number of items and w is the capacity.

3.3.2.1 Top-Down approach It is based on memorization techniques. This approach di-
vides a large problem into multiple sub-problems and solves sub-problems only if the solution
is not memorized. That is, there is no need to recalculate the same subproblems.

3.3.3 Fully polynomial time scheme

Polynomial Time Approximation Scheme (PTAS) is a type of approximate algorithms that
provide user to control over accuracy which is a desirable feature. These algorithms take an
additional parameter > 0 and provide a solution that is (1 + ϵ) approximate for minimization
and (1 – ϵ) for maximization. Fully Polynomial Time Approximation Scheme (FPTAS) is a
stricter scheme of PTAS. In FPTAS, algorithm need to be polynomial in both the problem
size n and 1. In this algorithm, we firstly find the maximum valued item, i.e. the maximum
choosed_items[i].value Let this maximum value be maxVal.
Then we compute adjustment factor k for all values, with :

k = (maxV al ∗ ϵ)/n

And finally we adjust all the values by creating a new array. This new array with adjusted
values is passed as a parameter to the dynamic programming algorithm, which will calculate
our solution. [5]

val′[i] = floor(val[i]/k)

3.3.4 Greedy

Greedy programming techniques are used in optimization problems. They typically use some
heuristic or common sense knowledge to generate a sequence of suboptimum that hopefully
converges to an optimum value [3].
There is 3 posiibilities of greedy algorithm
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3.3.4.1 Greedy Ratio Choose the items with as high a value per weight as possible(that
mean we have to sort items by the ratio weight value in in descending order).

3.3.4.2 Greedy Weight Choose the items with less weights as possible(that mean we have
to sort items by the weight in in ascending order).

3.3.4.3 Greedy Value Choose the items with highs values as possible(that mean we have
to sort items by the value in in descending order).

Fractional knapsack problem The fractional knapsack problem also uses greedy method
based on ratio, it’s maximise the value and take all weight, but it’s not considered as 0/1 knap-
sack problem (In fractional we can break items) That is not authorised in 0/1 knapsack problem.

Time complexity of the algorithm
1. Sorting items O(NlogN)
2. choose items O(N)

O(NlogN) + O(N) ≈ O(NlogN)

3.3.5 Branch and Bound

Branch and bound is an algorithm design paradigm which is generally used for solving combina-
torial optimization problems. These problems typically exponential in terms of time complexity
and may require exploring all possible permutations in worst case. Branch and Bound solve
these problems relatively quickly. It creates and enumerates branches of possible solutions in
order to pick the optimal solution. Regions of the tree where there is no solution are deleted
consecutively. After exploring the whole tree, a solution is proposed. This algorithm is used for
optimization purposes.

3.3.6 Markov Chain Monte Carlo (MCMC)(Randomized)

3.3.6.1 Markoc chaine or Markov process is a stochastic model describing a sequence of
possible events in which the probability of each event depends only on the state attained in the
previous event [2].

3.3.6.2 Markov Chain Monte Carlo (MCMC) is a technique which can be used to
hard optimization problems (though generally it is used to sample from a distribution). The
general strategy is as follows :

— Define a Markov Chain with states being possible solutions, and (implicitly defined)
transition.

— Run MCMC (simulate the Markov Chain for many iterations until we reach a good state
of solution)
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The states will be all possible solutions : binary vectors x of length n (only having 0/1 entries).
We’ll then define our transitions to go to good states (ones that satisfy our weight constraint),
while keeping track of the best solution so far. This way, our stationary distribution has higher
probabilities on good solutions than bad ones. Hence, when we sample from the distribution
(simulating the Markov chain), we are likely to get a good solution !

Figure 1 – CMCM

Basically, this algorithm starts with the guess of x being all zeros (no items). Then, for NU-
MITER steps, we simulate the Markov Chain. Again, what this does is give us a sample from
our stationary distribution. Inside the loop, we literally just choose a random object and flip
whether or not we have it. We maintain track of the best solution so far and return it.
So this MCMC definitely won’t guarantee us to get the best solution, but it leads to Dumb
solutions that actually work quite well in practice [4].

Note This is just one version of MCMC for the knapsack problem, there are definitely probably
better versions and that what we prouved by updating this approch and make one better.

3.3.7 Personnel version based on Randomized approach

We take the same previous algorithm (CMCM) that is based on Markov chains and randomize
choises, just we changed the way used to generate the random numbers. Our appraoch can
generate random numbers with a simple way, the difference is that we can’t generate the same
number twice so we don’t need to flip (0 to 1 or 1 to 0) and we guarantee to visit all items and
one time unlike previvous algorithme (generate one number multiple time and flip each time,
that mean take items state 1 and return them state 0) .

Figure 2 – CMCM Own version

Time complexity of the algorithm O(N2)
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3.3.8 Genetic algorithms (GAs)

Genetic algorithms are probabilistic search algorithms that mimic biological evolutionary pro-
cesses, allowing users to solve complex optimization problems. They work based on a population
of chromosomes, with one chromosome representing a candidate solution. The genetic operator
causes the population to evolve over time and converge towards an optimal solution.
Of course, in the spirit of "survival of the fittest", GAs are designed to solve maximization
problems where chromosomes with higher fitness are more likely to survive and the objective
function is called the fitness function. A fitness function is a mathematical formula that assesses
the "quality" of a chromosome and directs evolutionary searches for regions of good fitness in a
given search space.

Figure 3 – Design of Genetic Algorithm

Given the zero-one encoding scheme, SGA is of course applicable to solving the knapsack
problem. The objective of the knapsack problem like we said before is to maximize the total
profit (p) of selecting items.Each with a profit pi and a weight wi, from a given item set of
size n, while simultaneously preventing the violation of the constraint that the total weight of
selected items exceeds the knapsack’s capacity W .
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Let f() represent the fitness function and x = (x1, . . ., xn) be a binary vector, indicating selec-
ted items, i.e., xi = 1 if the ith item is selected into the knapsack, and xi = 0 otherwise. The
knapsack problem can be formally described as follows :

mazimise{f(x)} = maximise{∑n
i=1 xipi}

subject to {∑n
i=1 xiwi < w} [1]

4 Experimentation & analyzing

After we implemented our algorithms, we focused on testing to obtain some analyzable results.
First of all we decided to analyze the time of execution and the memory usage for each algorithm,
and this by testing on different datasets : Random generated dataset , Normal distribution
generated dataset and an external dataset. In order to increase the accuracy of our tests, we
decided to launch every algorithm 10 times, so that we have 10 execution times. We will take
on every algorithm the average of the 10 times obtained.
For each algorithm we provide curves and tables inside the pdf files that are joined with this
report, we give the references of these documents inside all the sections below. The curves and
the graphs are in the folder results_data/analysis/all

4.1 Brute Force

We tested this algorithm only on a small scale dataset (lesser than 100 items), due to its com-
plexity, and the limits of our machines.

References :
Random generator :
analysis_random_small.pdf- Brute Force

Normal distribution generator : analysis_normal_small.pdf- Brute Force
analysis_normal_medium.pdf- Brute Force

We notice from these graphs that the execution time increases dramatically when the number
of items increases. This can be explained by the complexity of the brute force algorithm, which
tests all possible combinations. We can already guess that it is not the fastest algorithm. We
also can see that the execution time increases as we increase the capacity, this result can be
explained by our implementation, indeed we search the best value and combination thus the
algorithm must compute more data.

4.2 Dynamic programming

References :
Random generator :
analysis_random_small.pdf- Dynamic programming
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analysis_random_medium.pdf- Dynamic programming
analysis_random_large.pdf- Dynamic programming

Normal distribution generator :
analysis_normal_small.pdf- Dynamic programming
analysis_normal_medium.pdf- Dynamic programming
analysis_normal_large.pdf- Dynamic programming

External dataset :
analysis_dataset_medium.pdf- Dynamic programming

From these graphs, we notice that the growth of the execution time is linked to the growth of
the capacity, and this, whatever the type of input data is. However, we note that the execution
time is much lower than the bruteforce algorithm. Concerning the solution proposed by the
algorithm, Dynamic programming approach is efficient since it always finds the optimum. For
example in 3 tests for a medium-scale external dataset, the optimum is finded, for different
capacities (995, 1008, 2543), and different quantities of items (100, 200, 500 items).

4.3 Dynamic programming top and down version

References :
Random generator :
analysis_random_small.pdf- Dynamic programming TOP DOWN
analysis_random_medium.pdf- Dynamic programming TOP DOWN
analysis_random_large.pdf- Dynamic programming TOP DOWN

Normal distribution generator :
analysis_normal_small.pdf- Dynamic programming TOP DOWN
analysis_normal_medium.pdf- Dynamic programming TOP DOWN
analysis_normal_large.pdf- Dynamic programming TOP DOWN

External dataset :
analysis_dataset_medium.pdf- Dynamic programming TOP DOWN

From these graphs, we can make the same conclusion as for the other algorithms concerning
the increase of the time related to the increase of the capacity. We can also say that the top
and down version is slower than the dynamic programming regarding to the average execution
time. For the normal distribution tests, we can explain the graphs by the fact that , When the
algorithm arrives to the biggest weights, the time execution increases. and that’s logical when
we compare it to the normal distribution graph.

4.4 The Fully polynomial time approximation scheme (FPTAS)

References :
Random generator :
analysis_random_small.pdf- Dynamic programming FPTAS
analysis_random_medium.pdf- Dynamic programming FPTAS
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analysis_random_large.pdf- Dynamic programming FPTAS

Normal distribution generator :
analysis_normal_small.pdf- Dynamic programming FPTAS
analysis_normal_medium.pdf- Dynamic programming FPTAS
analysis_normal_large.pdf- Dynamic programming FPTAS

External dataset
analysis_dataset_medium.pdf- Dynamic programming FPTAS

Whatever dataset is provided to this algorithm, the execution time grows linearly with the
capacity and the number of items. However, the FPTAS algorithm seems to be slower than
the top and down algorithm. For example, for a capacity of 1000 and 1000 items as input, the
FPTAS takes approximatively 4.1 secondes to execute , while the top and down version, takes
only 0.90 secondes. the FPTAS algorithm has approximatively the same execution time as the
classical dynamic programming algorithm.

4.5 Greedy weight

References :
Random generator :
analysis_random_small.pdf- Greedy weight
analysis_random_medium.pdf- Greedy weight
analysis_random_large.pdf- Greedy weight

Normal distribution generator :
analysis_normal_small.pdf- Greedy weight
analysis_normal_medium.pdf- Greedy weight
analysis_normal_large.pdf- Greedy weight

External dataset
analysis_dataset_medium.pdf- Greedy weight

When we provide the algorithm with data generated with the normal distribution generator,
the algorithm decrease its time of execution as we increase the capacity, this can be explained
by the normal distribution curve that generate symetric data. The greedy weight algorithm sort
the items by their weights and then choose the item that fit in the knapsack, that’s why the
execution time decrease. When we test the same algorithm with a random generated dataset,
the execution time also decrease but not as significantly as when we generated the data with the
normal distribution. The graph also seems to reach a maximum. We even tested the algorithm
with an external dataset, wich when the result put on a chart describe an increase of the
execution time when the number of items and capcity is increased. We can notice that the
execution time increase rapidly when the number of items is increased.
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4.6 Greedy value

References :
Random generator :
analysis_random_small.pdf- Greedy value
analysis_random_medium.pdf- Greedy value
analysis_random_large.pdf- Greedy value

Normal distribution generator :
analysis_normal_small.pdf- Greedy value
analysis_normal_medium.pdf- Greedy value
analysis_normal_large.pdf- Greedy value

External dataset
analysis_dataset_medium.pdf- Greedy value
The greedy value algorithm has the same pattern when observing the generated curve, that’s
logical the sole difference in the algorithm is the sorting that is applied to the values. When
observing the result we noticed that the greedy value algorithm provide a better solution than
the greedy weight.

4.7 Randomized approach (CMCM)

References :
Random generator :
analysis_random_small.pdf- RANDOM CMCM
analysis_random_medium.pdf- RANDOM CMCM
analysis_random_large.pdf- RANDOM CMCM

Normal distribution generator :
analysis_normal_small.pdf- RANDOM CMCM
analysis_normal_medium.pdf- RANDOM CMCM
analysis_normal_large.pdf- RANDOM CMCM

External dataset
analysis_dataset_medium.pdf- RANDOM CMCM
For CMCM since it’s randomize algorithm , it will never give optimal soltution and that appears
in table of comparaison, it’s always far than optimal solution and the execution time increase
as we grow the number of items.

4.8 Genetic No optima

References :
Random generator :
analysis_random_small.pdf- Genetic No optima
analysis_random_medium.pdf- Genetic No optima
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Normal distribution generator :
analysis_normal_small.pdf- Genetic No optima

External dataset
analysis_dataset_medium.pdf- Genetic No optima
The genetic algorithm is launched with two parameter the numbers of genome we want to create
each generation and the number of generation. Thus the time execution will mainly depends on
these two parameter, indeed for the curve provided in the analysis document, we can see that
watever the capcity or the number of items the execution time is the same. But when we change
the number of generation or the number of genome the execution time grow exponentialy.

4.9 BRANCH AND BOUND BFS

References :
Random generator :
analysis_random_small.pdf- BRANCH AND BOUND BFS
analysis_random_medium.pdf- BRANCH AND BOUND BFS
analysis_random_large.pdf- BRANCH AND BOUND BFS

Normal distribution generator :
analysis_normal_small.pdf- BRANCH AND BOUND BFS
analysis_normal_medium.pdf- BRANCH AND BOUND BFS
analysis_normal_large.pdf- BRANCH AND BOUND BFS

External dataset
analysis_dataset_medium.pdf- RANDOM BRANCH AND BOUND BFS

4.10 BRANCH AND BOUND DFS

References :
Random generator :
analysis_random_small.pdf- BRANCH AND BOUND DFS
analysis_random_medium.pdf- BRANCH AND BOUND DFS
analysis_random_large.pdf- BRANCH AND BOUND DFS

Normal distribution generator :
analysis_normal_small.pdf- BRANCH AND BOUND DFS
analysis_normal_medium.pdf- BRANCH AND BOUND DFS
analysis_normal_large.pdf- BRANCH AND BOUND DFS

External dataset
analysis_dataset_medium.pdf- RANDOM BRANCH AND BOUND BFS
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5 General comparison

5.1 Time comparison

After studying each algorithm on different datasets, we can conclude that there is a strong
corellation between the number of items, and execution time whatever distribution used. If we
compare between the algorithms, regarding the time, using the same dataset, we can deduce
that the slowest algorithms are : Dynamic Programming approaches, Brute and force, Genetic
algorithm. While the greedy algorithms seems to be really fast.

Figure 4 – Comparison on 500 items and 2543 capacity

5.2 Solution comparison

The efficency of the algorithm is defined by the solution it finds. Dynamic programming and
brute force are always returning the optimal solution, even though they are the slower to
execute. Greedy approaches are losing efficiency by gaining time, since they are returning a
solution that is far from the optimal solution.

5.3 Memory usage

Our study allowed us to conclude that all the algorithms are similar in memory usage, except
the Genetic algorithm, and the dynamic top and down.
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Figure 5 – Comparison on 500 items and 2543 capacity

Figure 6 – Comparison on 500 items and 2543 capacity

6 Checklist

1. Did you proofread your report ? YES
2. Did you present the global objective of your work ? YES
3. Did you present the principles of all the methods/algorithms used in your project ? YES
4. Did you cite correctly the references to the methods/algorithms that are not from your own ?
YES
5. Did you include all the details of your experimental setup to reproduce the experimental
results, and explain the choice of the parameters taken ? YES
6. Did you provide curves, numerical results and error bars when results are run multiple times ?
YES
7. Did you comment and interpret the different results presented ? YES
8. Did you include all the data, code, installation and running instructions needed to reproduce
the results ? YES
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9. Did you engineer the code of all the programs in a unified way to facilitate the addition of
new methods/techniques and debugging ? YES
10. Did you make sure that the results different experiments and programs are comparable ?
YES
11. Did you sufficiently comment your code ? YES
12. Did you add a thorough documentation on the code provided ? YES
13. Did you provide the additional planning and the final planning in the report and discuss
organization aspects in your work ?
14. Did you provide the workload percentage between the members of the group in the report ?
Here it is !

— BENGUEZZOU Idriss 30%
— MEZIANE Ghilas 30%
— BOUTOUIZERA Mohammed 30%
— ROUABAH Mohammed 7%
— ZEGHDALLOU Ilyes 3%

Initialization of the project : Benguezzou - Meziane - Boutouizera
implementation of the generators : Benguezzou - Meziane
Uploading and testing external datasets : Benguezzou Brute force Algorithm : Benguezzou -
Meziane
Dynamic programming Algorithm : Benguezzou - Meziane Dynamic programming Top down
Algorithm : Benguezzou - Meziane
Fptas algorithm : Boutouizera
3 Greedy approaches : Boutouizera
CMCM algorithm : Boutouizera
Branch and bound : Benguezzou - Meziane
Branch and bound DFS/BFS : Rouabah
Genetic algorithm : Benguezzou - Meziane
Ant colony algorithm : Zeghdallou
Testing functions : Benguezzou - Meziane
Analyze and Test : Benguezzou - Meziane - Boutouizera
Report : Benguezzou - Meziane - Boutouizera
Additional report : Zeghdallou Rouabah
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